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Attraction of spiral waves by localized inhomogeneities with small-world connections
in excitable media
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Trapping and untrapping of spiral tips in a two-dimensional homogeneous excitable medium with local
small-world connections are studied by numerical simulation. In a homogeneous medium which can be simu-
lated with a lattice of regular neighborhood connections, the spiral wave is in the meandering regime. When
changing the topology of a small region from regular connections to small-world connections, the tip of the
spiral waves is attracted by the small-world region, where the average path length declines with the introduc-
tion of long distant connections. The “trapped” phenomenon also occurs in regular lattices where the diffusion
coefficient of the small region is increased. The above results can be explained by the eikonal equation, the
Luther equation, and the relation between the core radius and the diffusion coefficient.
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I. INTRODUCTION answer this question, we changed the widely used regular

. - . network in spiral wave study to a small-world network in
Spiral waves are characteristic structures of excitable me- P y

dia that have been observed in many extended systems sueﬁrt of the system to investigate its effects.

o reaclon-difusion medfl-3, aggregaing coloies of 1% 10419 St e sty 1 et o 8 oo
slime mold[4], and heart tissuegs], where they are sus- P :

pected to play an essential role in cardiac arrhythmia an how that this special region is a dynamic attractor for spiral
fibrillation. Sudden cardiac death resulting from ventricularézaé?kﬁtch t'::;"(’ﬁ tﬁzn;ﬁgf it:e d?f?fgiggfc?eiﬁsc rig?lltl-i\:]v%r]lg

fibrillation is generated from the fragmenting or breakup Oflocal region. and show that ?heg are equivalent. We aive a
spiral waves[6—8]. Spiral waves are prone to a variety of glon, y d ' 9

instabilities [9—11], one of which is meander instability discussion and conclude our study in the last section.
[12,13, where spiral tips follow a hypocycloid trajectory

instead of moving around a small circle. Due to the Doppler  Il. THE EFFECT OF SMALL-WORLD NETWORK

effect, this spiral may undergo a transition from ordered spi- The model we used is the two-variable FitzHugh-Nagumo

ral patterns to a state of defect-mediated turbulgddg In . o ; - .
the meandering regime, the spiral tips can be made to dri@oNdegilo] with local nearest-neighbor couplings in a region
1 2y

and can be controlled by external influen¢24] or localized

inhomogeneities of defec{d 5]. du
After the concept of small-world connections was pro- Tﬂtl =(@-u) U= Dy v+ Duvzuivj’ (1)

posed by Watts and Strogaf26], it has quickly attracted
much attention because this kind of connection exists com-

monly in real world, such as in social systefd¥], neural dvi, =e(bu;—vi)) + D,V i 2)
networks[18], and epidemic probleni49]. Different studies dt ’ ’ '

show that a little change of the network connections can herei=1 2 Ny, j=1,2 N,: U :(t) andu; (t) are di-
essentially change the features of a given medium, and plays . sionless ex: b 2 b

: . D . . xcitable variable and recovery variable, respec-
a very important role in determining the dynamic behavior Oftively' D, andD, are diffusion coefficients of the two vari-
a system. '

. . . . ables. The Laplacian in the last term can be approximated as
In numerical simulations, a spatially extended system can

be approximately regarded as a network consisting of a num- > 1

ber of sites connected with certain topology. Thus localized Ve = p(ui—l,i Tl Ut U~ A, ()
inhomogeneities can be achieved by changing the topology

of the network. In heart tissues, pacemakers dominate the 1

dynamics of the traveling wave behavior and control the Vzvi,j = F(Ui—l,j + Ui+ U1+ e~ i) (4)
heart rhythm. We hypothesize that this happens because the

characters and Fhe structures of the local cells are differefyhen 0<a<1,b=0,D,<D
from other cardiac muscle cells. Could a small-world net-
work describe one of the characters of the pacemake

w €<1, the equation describes

- -an excitable medium, which can be regarded as a simplified

r? TQodel for cardiac tissues. In the following discussion, we set
the control parameters as followls; =N,=256 (space unit
h=1), a=0.1, b=1.0, ¢=0.005, D,=0.33, D,=0. No-flux

*Electronic address: gi@pku.edu.cn boundary condition is applied in the simulation.
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FIG. 1. Spiral pattern in different mediéa) a regular network, (b) l

ps=0; (b) a small-world networkps=0.1; (c) spiral wave and its
tip’s motion in the regular network. The white curve is the trajec-
tory of the spiral tip; andd) spiral wave and its tip’s motion in the
small-world networkNg=10.

FIG. 2. (a) Transition curves ofp, as a function ofpg with
different Ng. The solid lines are the sigmoidal fitting,=1-1/(1
+exfd (ps—pPsd/dps]); (b) transition curves op, as a function of
with different Ng. The solid lines are the fitting op,=1/(1

) ) ) S N +exd (I-1¢)/dl]). Herel, is the critical length wherg,=0.5, anddl
Using the vertical gradient distribution initial condition, is the transition width.

we first create spiral waves in regular lattid€sg. 1(a)]. In

this case, the spiral tip follows a hypocycloid trajectory, gty of the small-world network, we use attraction probabil-
showing a typical sign of meandering st4], see Fig. i as an order parameter, which can be obtained by re-
1(c)- We then create a small-world network in a small local e ating(50 times in our workthe simulation using the same
region €1 of a sizeNNy(Ns<Ny), where the spiral tip lo-  conrol parameters but with different small-world network
cates. The small-world network is created in the followingconnections. Our simulation results show that the most influ-
way: With the probabilityps(0=< ps=1), we reconnect every entja| factor top, is the small-world creation probability..
edge in the regiod) from one of its original vertex to an-  As shown in Fig. 2a), p, increases with the increase of the
other vertex chosen randomly in the regift6] [see Fig. small-world p, Whenp,=0 (corresponding to a regular net-
1(b)]. The change of connections leads to the change of “difwork), the spiral tip cannot be attracted; whege1 the tip
fusion” mode. Supposing nodé|[j] is connected with node  can pe attracted with probability 1, which means the random
[x1]ly1], node[x;][y,],... node [x[yil, then the diffusion  network has a stronger attraction ability than the small-world
term in the Egs(1) and(2) becomes network. Between & p,< 1, there is a transition where the
attraction probabilityp, increases rapidly. The transition
Vo, = lz(ux g F U+ U kU, (5) point p; can be defined as the value mfwhenp,=0.5.
R tek ' One of the most important characters of small-world net-
work is the reducing of the average path length while keep-
) 1 ing the clustering coefficient, almost constant. The aver-
Vi = 5y, Yoy, * o oy ko). (6) age path length is defined as the number of edges in the
shortest path between two vertices, averaged over all pairs of
Introducing the small-world network region in the reac- vertices. The clustering coefficient is the averag€pbver
tion medium greatly influences the motion of the spiral tip.all vectorv. C, denotes the ratio of the actually existing
We find that the small-world network region can attract theedges to the maximum allowable edges among all the neigh-
spiral tip as it passes through the region. After that the spirabors of vectorv) [16]. Define the normalized average path
tip rotates around its boundary, as shown in Figl)1Be- lengthl of small-world network as=L/L,, wherelL is the
cause the topological structure of the local small-world net-average path length of small-world network(n[21] andL,
work is generated randomly under the rule mentioned aboves the average path length of regular network(n | will
the attraction only occurs with a certain probability underdecrease from 1 te (¢ >0) when pg changes from 0 to 1.
certain parameter range. To characterize the attraction prorom our numerical simulations, we find the same type of
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The above simulation results suggest that the increase of
0010 , , , , diffusion speed in the small region is responsible for the
5 6 7 8 9 attraction of the spiral tip. To quantitatively compare the two
R (s.u) systems, we analyze the diffusion terms of the two systems.

In the small-world network, because of the long-distance
FIG. 3. (a) The critical length; as a function of the radiB of  connections, the average distance between nodes declines as
region{), (R=Ns/2), the error bar igll [see the caption of Fig(®) ~ p_increases from 0 to 1. In a network model of a reaction-
about the fitting; (b) DdlZ as a function oR diffusion system, this effect can be in a sense translated from
the decrease of the average path length between nodes while
transition curve ofp, as a function ofl, as shown in Fig. keeping the distance of two neighboring notiesonstant, to
2(b), indicating that the major effect of the small-world to- the decrease of the step lendttwhile keeping the network
pology to the behavior of spiral waves is the decrease of theegular. The normalized average path lengiten also de-
average path length. In addition, defining the critical lerigth scribes the relative change bf From this argument, the
as the value of whenp,=0.5, we find that the critical length diffusion items of the small-world network can be expressed
decreases linearly with the increase of the sizp$ee Fig. as

3(a). .
DS_(lh)z(ui—l,j FUjpg )+ Ujjog+ Ui — 4 ), (7)
11l. COMPARE WITH INCREASING THE DIFFUSION
COEFFICIENT 1
0
Our simulation results suggest that the major effect of the D, (|h)2(0i—1,i + Vi1 o1 U e~ A0 (8)

small-world network on the spiral tip movement comes from

the long-distance connections, which lead to shortening the At the critical point, for a fixedR, the diffusion terms in
average path lengtft) and increasing the diffusion speed. If two systems should be the same. So tHaf1/h?

the above suggestion is correct, the phenomenon of spiral tipDcDo1/h?=DJ1/(Ich)2, which givesD Z=1. As presented
attraction should also occur when we locally increase thén Fig. 3(b), our simulation fits this analysis within the range
diffusion constant in Eqs(l) and (2). In this part of work,  of error. This result indicates that our proposition is reason-
we increase the diffusion coefficient in a small circular re-able. The attracting effect of the small-world network comes
gion Q by D times and keep the system with regular connec{from the decline of inside the inhomogeneous ar@a

tions. In the following discussion, we will uge’ to denote
the diffusion coefficient in regiorf), and useD{ for the
region outside of, so thatD{!=DD?. We find that wherD
is large enough the spiral tip can be attracted by the reQion A question should be answered before fully understanding
when it passes through it and then travels around it. At ahe effect of the small-world network in the dynamics of
givenR (R> Ry, Ris the radius of), R, is the core radius of spiral tips: what is the mechanism for the spiral tip attrac-
spiral whean}zDS), we can define two valud3; andD,: A tion? In the following discussion, we give an explanation
temporal attraction occurs whé&n <D < D,; in this case the with eikonal equation, Luther equati¢@2], and the relation

tip can be trapped for a short period and then escapes; thetween the diffusion coefficient and the spiral core radius.
trapped time increases with. WhenD >D,, the tip can be  According to the analysis of the spiral tip dynamics given by
trapped for a long enough period. Definily as the mean Hakim and Karmg23], for the steady rotational movement
value ofD; andD,, the plot of D, with differentR is shown  of a spiral tip in an excitable medium, the core radiias a

in Fig. 4. function of diffusion coefficient can be written as

IV. DISCUSSION
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D bk |32 N 1 4D
R= 4 —| 9 e (12)
Co| , 2Dy IRlgp 2 IR
C
W

In our system, assuming a continuous changB pét the

whereD,, is the diffusion coefficient of the activatén); cois ~ boundary of regiorf), we havesDu/dR<0. Thus Eq(12)
the speed of plane wavb; K, andB, are all constantaVis  indicates thatdN/dR)|;,)0. That means, if we introduce a
the constant width of the excited region. In the simulation,small deviation from the trapped motion of the spiral tip, the
we assume that at the boundary(®fthere exists a “virtual” system will return to the trapped state spontaneously, be-
gradient region oD, which links the outside and inside re- cause we hav&l<O0 inside the regio), andN>0 outside
gions. For a giverR of the regionQ[R>R,=R(DJ)], the  the region) (A points to the center of) region.
“trapped” motion of the spiral tip requires a specific value of  In conclusion, we find that in an excitable system local
D,, satisfying Eq.(9). When D,< Df}, the spiral tip will  change of topological structure can trap the spiral tip. This
enter the gradient region where the system can find the reability comes from the increase of diffusion speed. We prove
quiredD,, so that the spiral tip will rotate around the gradi- this by increasing the diffusion coefficient. We also give a
ent area at the boundary &; on the other hand, when theoretical explanation using eikonal equation, Luther equa-
D,>D{, the trapped motion cannot be sustained by the cention, and the relation between the core radius and the diffu-
tral region. From th'g argument, at critical point, we will sion coefficient, which fits well with the results of simula-
haveD,(R)=D,=DcD,. As shown in Fig. 4, our simulation {jon e should note that there are other situations where the
results are consistent with this analysis within the range Ofip of spiral waves can be trapped in a given area. For ex-
error. o o ample, Lazaret al. reported that self-sustained chemical
To prove the ”appe_d state of splral tlp_motlon IS a Stabl‘%Naves can rotate around a central obstacle in an annular two-
state, we apply the eikonal equation, Wh_'Ch determines thcgimensional excitable system, and the wave fronts in the
relation between the curvature of a traveling wave front an ase of an annular excitable region are purely involutes of

its speed in an excitable medium, and the Luther relation . . )
which describes the relation between the speed of chemicﬁl]e central obstacle in the asymptotic stg2é]. Obviously

waves and the diffusion coefficient of activati22]. The %is phenomenon is beyond our analysis. More work should

eikonal equation i&\=C—D, whereN is the normal wave be done to fully understand the attractive effect of local in-
- urty s . . . . .

speed« is the local curvature of the wave front: the Luther homogeneities in an excitable reaction-diffusion system.

equation isc=a\D,, wherea is a constant. Insert the Luther

equation into the eikonal relation we have

N=a\D, - Dy«. (10)
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