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Trapping and untrapping of spiral tips in a two-dimensional homogeneous excitable medium with local
small-world connections are studied by numerical simulation. In a homogeneous medium which can be simu-
lated with a lattice of regular neighborhood connections, the spiral wave is in the meandering regime. When
changing the topology of a small region from regular connections to small-world connections, the tip of the
spiral waves is attracted by the small-world region, where the average path length declines with the introduc-
tion of long distant connections. The “trapped” phenomenon also occurs in regular lattices where the diffusion
coefficient of the small region is increased. The above results can be explained by the eikonal equation, the
Luther equation, and the relation between the core radius and the diffusion coefficient.
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I. INTRODUCTION

Spiral waves are characteristic structures of excitable me-
dia that have been observed in many extended systems such
as reaction-diffusion media[1–3], aggregating colonies of
slime mold [4], and heart tissues[5], where they are sus-
pected to play an essential role in cardiac arrhythmia and
fibrillation. Sudden cardiac death resulting from ventricular
fibrillation is generated from the fragmenting or breakup of
spiral waves[6–8]. Spiral waves are prone to a variety of
instabilities [9–11], one of which is meander instability
[12,13], where spiral tips follow a hypocycloid trajectory
instead of moving around a small circle. Due to the Doppler
effect, this spiral may undergo a transition from ordered spi-
ral patterns to a state of defect-mediated turbulence[11]. In
the meandering regime, the spiral tips can be made to drift
and can be controlled by external influences[14] or localized
inhomogeneities of defects[15].

After the concept of small-world connections was pro-
posed by Watts and Strogatz[16], it has quickly attracted
much attention because this kind of connection exists com-
monly in real world, such as in social systems[17], neural
networks[18], and epidemic problems[19]. Different studies
show that a little change of the network connections can
essentially change the features of a given medium, and plays
a very important role in determining the dynamic behavior of
a system.

In numerical simulations, a spatially extended system can
be approximately regarded as a network consisting of a num-
ber of sites connected with certain topology. Thus localized
inhomogeneities can be achieved by changing the topology
of the network. In heart tissues, pacemakers dominate the
dynamics of the traveling wave behavior and control the
heart rhythm. We hypothesize that this happens because the
characters and the structures of the local cells are different
from other cardiac muscle cells. Could a small-world net-
work describe one of the characters of the pacemaker? To

answer this question, we changed the widely used regular
network in spiral wave study to a small-world network in
part of the system to investigate its effects.

In the following section, we study the effect of a local
small-world network on the behavior of spiral waves. We
show that this special region is a dynamic attractor for spiral
tips. In Sec. III, we compare the effect of the small-world
network with that of the changing diffusion coefficient in the
local region, and show that they are equivalent. We give a
discussion and conclude our study in the last section.

II. THE EFFECT OF SMALL-WORLD NETWORK

The model we used is the two-variable FitzHugh-Nagumo
model[20] with local nearest-neighbor couplings in a region
of N13N2,

dui,j

dt
= sa − ui,jdsui,j − 1dui,j − vi,j + Du¹

2ui,j , s1d

dvi,j

dt
= «sbui,j − vi,jd + Dv¹

2vi,j , s2d

wherei =1,2, . . . ,N1, j =1,2, . . . ,N2; ui,jstd andvi,jstd are di-
mensionless excitable variable and recovery variable, respec-
tively; Du andDv are diffusion coefficients of the two vari-
ables. The Laplacian in the last term can be approximated as

¹2ui,j >
1

h2sui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,jd, s3d

¹2vi,j >
1

h2svi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,jd. s4d

When 0,a,1, bù0, Dv!Du, e!1, the equation describes
an excitable medium, which can be regarded as a simplified
model for cardiac tissues. In the following discussion, we set
the control parameters as follows:N1=N2=256 (space unit
h=1), a=0.1, b=1.0, e=0.005, Du=0.33, Dv=0. No-flux
boundary condition is applied in the simulation.*Electronic address: qi@pku.edu.cn
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Using the vertical gradient distribution initial condition,
we first create spiral waves in regular lattices[Fig. 1(a)]. In
this case, the spiral tip follows a hypocycloid trajectory,
showing a typical sign of meandering state[12], see Fig.
1(c). We then create a small-world network in a small local
region V of a sizeNsNssNs!N1d, where the spiral tip lo-
cates. The small-world network is created in the following
way: With the probabilitypss0øpsø1d, we reconnect every
edge in the regionV from one of its original vertex to an-
other vertex chosen randomly in the region[16] [see Fig.
1(b)]. The change of connections leads to the change of “dif-
fusion” mode. Supposing node[i][j] is connected with node
fx1gfy1g, node fx2gfy2g , . . . node fxkgfykg, then the diffusion
term in the Eqs.(1) and (2) becomes

¹2ui,j >
1

h2sux1,y1
+ ux2,y2

+ ¯ + uxk,yk
− kui,jd, s5d

¹2vi,j >
1

h2svx1,y1
+ vx2,y2

+ ¯ + vxk,yk
− kvi,jd. s6d

Introducing the small-world network region in the reac-
tion medium greatly influences the motion of the spiral tip.
We find that the small-world network region can attract the
spiral tip as it passes through the region. After that the spiral
tip rotates around its boundary, as shown in Fig. 1(d). Be-
cause the topological structure of the local small-world net-
work is generated randomly under the rule mentioned above,
the attraction only occurs with a certain probability under
certain parameter range. To characterize the attraction prop-

erty of the small-world network, we use attraction probabil-
ity pa as an order parameter, which can be obtained by re-
peating(50 times in our work) the simulation using the same
control parameters but with different small-world network
connections. Our simulation results show that the most influ-
ential factor topa is the small-world creation probabilityps.
As shown in Fig. 2(a), pa increases with the increase of the
small-worldps. Whenps=0 (corresponding to a regular net-
work), the spiral tip cannot be attracted; whenps=1 the tip
can be attracted with probability 1, which means the random
network has a stronger attraction ability than the small-world
network. Between 0,ps,1, there is a transition where the
attraction probabilitypa increases rapidly. The transition
point pc can be defined as the value ofps whenpa=0.5.

One of the most important characters of small-world net-
work is the reducing of the average path length while keep-
ing the clustering coefficientCv almost constant. The aver-
age path length is defined as the number of edges in the
shortest path between two vertices, averaged over all pairs of
vertices. The clustering coefficient is the average ofCv over
all vector v. Cv denotes the ratio of the actually existing
edges to the maximum allowable edges among all the neigh-
bors of vectorv) [16]. Define the normalized average path
length l of small-world network asl =L /L0, whereL is the
average path length of small-world network inV [21] andL0
is the average path length of regular network inV. l will
decrease from 1 to« s«.0d when ps changes from 0 to 1.
From our numerical simulations, we find the same type of

FIG. 1. Spiral pattern in different media.(a) a regular network,
ps=0; (b) a small-world network,ps=0.1; (c) spiral wave and its
tip’s motion in the regular network. The white curve is the trajec-
tory of the spiral tip; and(d) spiral wave and its tip’s motion in the
small-world network,Ns=10.

FIG. 2. (a) Transition curves ofpa as a function ofps with
different Ns. The solid lines are the sigmoidal fittingpa=1−1/s1
+expfsps−pscd /dpsgd; (b) transition curves ofpa as a function ofl
with different Ns. The solid lines are the fitting ofpa=1/s1
+expfsl − lcd /dlgd. Herelc is the critical length wherepa=0.5, anddl
is the transition width.
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transition curve ofpa as a function ofl, as shown in Fig.
2(b), indicating that the major effect of the small-world to-
pology to the behavior of spiral waves is the decrease of the
average path length. In addition, defining the critical lengthlc
as the value ofl whenpa=0.5, we find that the critical length
decreases linearly with the increase of the size ofV, see Fig.
3(a).

III. COMPARE WITH INCREASING THE DIFFUSION
COEFFICIENT

Our simulation results suggest that the major effect of the
small-world network on the spiral tip movement comes from
the long-distance connections, which lead to shortening the
average path lengthsld and increasing the diffusion speed. If
the above suggestion is correct, the phenomenon of spiral tip
attraction should also occur when we locally increase the
diffusion constant in Eqs.(1) and (2). In this part of work,
we increase the diffusion coefficient in a small circular re-
gion V by D times and keep the system with regular connec-
tions. In the following discussion, we will useDu

V to denote
the diffusion coefficient in regionV, and useDu

0 for the
region outside ofV, so thatDu

V=DDu
0. We find that whenD

is large enough the spiral tip can be attracted by the regionV
when it passes through it and then travels around it. At a
givenR (R.R0, R is the radius ofV, R0 is the core radius of
spiral whenDu

V=Du
0), we can define two valuesD1 andD2: A

temporal attraction occurs whenD1,D,D2; in this case the
tip can be trapped for a short period and then escapes; the
trapped time increases withD. WhenD.D2, the tip can be
trapped for a long enough period. DefiningDc as the mean
value ofD1 andD2, the plot ofDc with differentR is shown
in Fig. 4.

The above simulation results suggest that the increase of
diffusion speed in the small region is responsible for the
attraction of the spiral tip. To quantitatively compare the two
systems, we analyze the diffusion terms of the two systems.
In the small-world network, because of the long-distance
connections, the average distance between nodes declines as
ps increases from 0 to 1. In a network model of a reaction-
diffusion system, this effect can be in a sense translated from
the decrease of the average path length between nodes while
keeping the distance of two neighboring nodesh constant, to
the decrease of the step lengthh while keeping the network
regular. The normalized average path lengthl can also de-
scribes the relative change ofh. From this argument, the
diffusion items of the small-world network can be expressed
as

Du
0 1

slhd2sui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,jd, s7d

Dv
0 1

slhd2svi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,jd. s8d

At the critical point, for a fixedR, the diffusion terms in
two systems should be the same. So thatDu

V1/h2

=DcDu
01/h2=Du

01/slchd2, which givesDclc
2=1. As presented

in Fig. 3(b), our simulation fits this analysis within the range
of error. This result indicates that our proposition is reason-
able. The attracting effect of the small-world network comes
from the decline ofl inside the inhomogeneous areaV.

IV. DISCUSSION

A question should be answered before fully understanding
the effect of the small-world network in the dynamics of
spiral tips: what is the mechanism for the spiral tip attrac-
tion? In the following discussion, we give an explanation
with eikonal equation, Luther equation[22], and the relation
between the diffusion coefficient and the spiral core radius.
According to the analysis of the spiral tip dynamics given by
Hakim and Karma[23], for the steady rotational movement
of a spiral tip in an excitable medium, the core radiusR as a
function of diffusion coefficient can be written as

FIG. 3. (a) The critical lengthlc as a function of the radiusR of
regionV, sR=Ns/2d, the error bar isdl [see the caption of Fig. 2(b)
about the fitting]; (b) Dclc

2 as a function ofR.

FIG. 4. The critical diffusion coefficientDc as a function ofR,
where the line is the best fitting with Eq.(9). The error bars are
estimated usingD1 andD2.
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R=
Du

c0 1 bK

Bc −
2Du

W
2

3/2

, s9d

whereDu is the diffusion coefficient of the activatorsud; c0 is
the speed of plane wave;b, K, andBc are all constants.W is
the constant width of the excited region. In the simulation,
we assume that at the boundary ofV there exists a “virtual”
gradient region ofDu which links the outside and inside re-
gions. For a givenR of the regionVfR.R0=RsDu

0dg, the
“trapped” motion of the spiral tip requires a specific value of
Du, satisfying Eq.(9). When Du,Du

V, the spiral tip will
enter the gradient region where the system can find the re-
quiredDu, so that the spiral tip will rotate around the gradi-
ent area at the boundary ofV; on the other hand, when
Du.Du

V, the trapped motion cannot be sustained by the cen-
tral region. From this argument, at critical point, we will
haveDusRd=Du

V=DcDu
0. As shown in Fig. 4, our simulation

results are consistent with this analysis within the range of
error.

To prove the trapped state of spiral tip motion is a stable
state, we apply the eikonal equation, which determines the
relation between the curvature of a traveling wave front and
its speed in an excitable medium, and the Luther relation,
which describes the relation between the speed of chemical
waves and the diffusion coefficient of activator[22]. The
eikonal equation isN=C−Duk, whereN is the normal wave
speed,k is the local curvature of the wave front; the Luther
equation is:c=aÎDu, wherea is a constant. Insert the Luther
equation into the eikonal relation we have

N = aÎDu − Duk. s10d

Taking partial derivative ofR in Eq. (10), we get

] N

] R
= F1

2
asDud−1/2 − kG ] Du

] R
. s11d

At the spiral tip we haveN=0, so that

U ] N

] R
U

tip
= −

1

2
ktip

] Du

] R
. s12d

In our system, assuming a continuous change ofDu at the
boundary of regionV, we have]Du/]R,0. Thus Eq.(12)
indicates thats]N/]Rdutipl0. That means, if we introduce a
small deviation from the trapped motion of the spiral tip, the
system will return to the trapped state spontaneously, be-
cause we haveN,0 inside the regionV, andN.0 outside
the regionV (n̂ points to the center ofV region).

In conclusion, we find that in an excitable system local
change of topological structure can trap the spiral tip. This
ability comes from the increase of diffusion speed. We prove
this by increasing the diffusion coefficient. We also give a
theoretical explanation using eikonal equation, Luther equa-
tion, and the relation between the core radius and the diffu-
sion coefficient, which fits well with the results of simula-
tion. We should note that there are other situations where the
tip of spiral waves can be trapped in a given area. For ex-
ample, Lázáret al. reported that self-sustained chemical
waves can rotate around a central obstacle in an annular two-
dimensional excitable system, and the wave fronts in the
case of an annular excitable region are purely involutes of
the central obstacle in the asymptotic state[24]. Obviously
this phenomenon is beyond our analysis. More work should
be done to fully understand the attractive effect of local in-
homogeneities in an excitable reaction-diffusion system.
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